Adapting to Water Scarcity
University of Newcastle July 2011

Prof W Mike Edmunds
Oxford University
School of Geography and the Environment
Oxford Water Futures Programme
Outline

- Water scarcity – are we running out of water?
- Water occurrence - groundwater focus
- Water quality and pollution – degradation of resources
- Case studies
 - Nigeria (Lake Chad)
 - India (Rajasthan)
 - China (North west)
- Adaptation and good news stories
Primary water reserves are becoming exhausted

Ice caps and glaciers and *groundwater* are the only stores of fresh water

The glaciers of the Tibetan plateau, sources of great Asian rivers, are being reduced by some 50 per cent every decade. Glacial melt waters have a direct impact on the livelihoods of some 3Bn people in Himalayan region.

Surface waters have short residence times, major resource in high rainfall areas but “fully allocated”
Is groundwater renewable - if so how much and over what timescales

Water tables in many countries are falling with severe consequences for public supplies and ecosystems.

Scarcity has rapidly become a problem mainly in past 50 years through introduction of the submersible pump in mid-20th century - and with subsidies for electricity.

Depletion of reserves exacerbated by quality deterioration

Groundwater is still poorly understood: “out of sight and out of mind”; compared with surface waters timescales of change are slow
Where are there reliable renewable sources of water?

Africa hydrogeological map

Sedimentary basins

Contrasting residence times according to geology

Renewability on a human timescale
Water scarcity is not an isolated issue

- Water scarcity is closely linked to climate change, energy needs, population increases as well as water availability for domestic uses, food and industry……
- Importantly it is a political issue!
Global water stress

- Emphasizes where human water use exceeds annual renewal
- Coincides with those regions dependent on irrigated agriculture
- An under-estimate of the problem: impacts of seasonal shortages omitted.
- Consequences of overuse include diminished river flow, depletion of groundwater reserves, reduction of environmental flows and potential for conflict.

Vorosmarty et al. Science 289, 284-288
Salinity impacts and loss of resources

Dryland salinity Australia

Saline groundwater Tunisia

Kufra oasis, Libya:

Coastal intrusion and salinity
Timescales of renewal – scientific tools to measure residence times

- Use of geochemical “clocks” – isotopes and dissolved gases
- Tritium and radiocarbon are important radiometric dating tools
- Recognition of modern water is possible from anthropogenic contaminants (e.g., CFCs with known history) and chemical impacts (Cl, NO₃, pesticides)
- Renewable and non-renewable water – timescales – we are mining groundwater
NIGERIA: The disappearance of Lake Chad

1969: The arrival of the fisheries research vessel
Lake Chad Basin

Holocene Lake MegaChad: palaeoshorelines from space 7000 years BP

M Schuster et al.
Quat Sci Rev. 24 2005, 1821 -1827
A chronology of change
Natural and anthropogenic factors affecting Lake Chad

This collection of maps has been sourced from a series of satellite images provided by NASA Goddard Space Flight Center:
Climate change or human impacts?

- Climate change or human impacts?
- 1966-75 irrigation accounts for 5% decrease
- 1983-1994 irrigation accounts for 50% of decrease
- Land use change
- Future trends?

SAHEL
Annual Rainfall Anomaly Index
1890 - 1991

After Hulme 1992
What is happening *beneath* Lake Chad?

Boreholes drilled in 1960s to intercept artesian water

Recharge under wetter climate – more than 20,000yrs ago:

Cooler conditions – 6-7$^\circ$ lower than today

(Noble Gas Recharge Temperature measurements)
How much renewable water?

\[R_d = \frac{P \cdot C_p}{C_s} \]

- \(P = 400 \text{ mm} \)
- \(C_p = 2.0 \text{ mg/l} \)
- \(C_s = 29.5 \text{ mg/l} \)
- \(R_d = 25 \text{ mm yr} \)
The Dwindling Supply

Much of India’s groundwater is being depleted, a problem that has accelerated with the proliferation of electric pumps. India is divided into 5,723 geographic blocks, of which more than 1,000 are considered overexploited or critical.

Source: Central Groundwater Board

The New York Times
India – (Ground)water Problems

- Green revolution, a massive increase in irrigation. Groundwater mining: introduction of the electric pump
- A million more pumps have been introduced every year
- Heavily subsidised electricity used to pump water to the surface
- A land of 750,000 villages
- Some 21M Indian farmers now dependent on and irrigate their land with groundwater – abstracting 250 km3 – as opposed to renewal of >150 km3
- Growing the wrong crops – rice, sugar cane, alfalfa and cotton
- Half the traditional hand dug wells and millions of tube wells have dried up – only half the land irrigated as of a decade ago
- Regulation is virtually non existent – nobody knows where the boreholes are, where the pumps are or who owns them.
India – Water Solutions

- A need to create sustainable rural development
- “Dying wisdom” – a new look at traditional solutions. Raising awareness of water scarcity. Potential for rainwater harvesting. Aquifer recharge. Applicable not only to rural areas – also to cities
- Demand management, community involvement and action. Holistic schemes – water security as a basis - to raise livelihoods of women, children – prevent migration...
Traditional and sustainable ways of water management
The Qanat systems of Persia and Middle East and Asia
Small scale rainwater harvesting solutions
Rajasthan
Adapting traditional approaches for holistic development in rural areas
Khadin (Field bunds)
Roof water harvesting
Sanitation

a greater social and development problem than safe water provision
Safe water as the basis of holistic development
Water Harvesting with community participation as the basis of sustainable and holistic rural development
Adaptation and the future
Renewable and non-renewable water resources – lessons from China
Minqin Basin - Gobi Desert
Salinisation and relocation

Shut down wells
Reduce farming
Move out of village
Closed for grazing
Signs of recovery 2009
New and improved approaches to water security in rural semi-arid regions

- Reapply traditional knowledge
- Water harvesting
- Conservation
- Green water use: rain fed agriculture
- Small scale and/or efficient agriculture water use
- Demand rather than supply led solutions
- Managed aquifer recharge
Holistic development based on water security
efficient and productive uses of domestic water

Paradigm shift – construct water systems where resources, system capacity and user demand can deliver water beyond basic needs to allow for small-scale productive uses (livestock, gardens, business) for food, health and dignity
Integration of technical, social and economic aspects of this approach on a water first basis
Conclusions

- Water scarcity – are we running out of water?
- The importance of groundwater and storage
- Renewable waters and soil water key to sustainable development
- Water, food and ecosystem
- Sustainable rural development – models are being shown to work